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Appendix E1 

Quantitative Image Analysis Methods 

Figure E1 presents a simplified illustration of the methods used in this study. Density 

thresholding and region growing were used for preliminary spine segmentation. This preliminary 

segmentation was then refined by using morphologic operations, with spinal canal extraction 

performed via watershed algorithm and directed acyclic graph search. Division of disk spaces 

and vertebrae into separately segmented regions of interest was accomplished by partitioning the 

spine with three-dimensional vertebral models (1). 

While the computer system segmented each thoracolumbar vertebra in its entirety from 

surrounding structures as part of the initial processing of the axial CT image sets, the algorithm 

for fracture detection in this preliminary work was designed to limit assessment of fractures to 

the body portion of the vertebrae to simplify the topological analysis and to focus on the 

structurally important Denis anterior and middle column injuries in this phase of algorithm 

design. A novel software algorithm was designed for vertebral body fracture line detection, 

termed here the cortical shell unwrapping algorithm (2). This algorithm segments, or separates, 

the vertebral body cortex from the underlying medullary space by using deformable dual-surface 

models to iteratively and precisely detect, fit, and then extract the interior (endosteal) and 

exterior (periosteal) surfaces of the cortex, forming a “cortical shell” (Fig E1b–E1d). For each 

vertebral body, a localized cylindrical coordinate system is established as a basis on which each 

three-dimensional deformable dual-surface cortical shell is then unwrapped (mapped) into a two-

dimensional plane (Fig E1e). Fracture lines in the unwrapped cortical shells are detected by 

means of pattern recognition techniques in which multiscale adaptive filtering methods are used 

to detect discontinuities in the unwrapped map (Fig E1f). 

Fracture line detections in the unwrapped cortical shells are then re-embedded into three-

dimensional space, and three-dimensional quantitative features of the fractures relative to the 

vertebrae are computed. These features can be broadly divided into categories such as 

comminution complexity, degree of displacement or distraction of the adjacent fragments, spatial 

morphology, geometric extent of fracture lines, and fracture centroid location. For each three-

dimensional fracture detection locus, a set of 28 characteristic features was computed. These 

features were then submitted to a filter that only allowed detections with features that occurred 

within preset ranges to pass through. This filtering restricted the number of detections allowed to 

pass, creating a resultant candidate fracture set. This candidate fracture set was then passed to a 

detection classifier. 

A committee of SVMs was used as the system classifier. The SVM committee was used 

to categorize detections as positive (fracture) or negative (no fracture), then to compare this 

SVM categorization with the reference standard data to determine whether there is a TP or FP 

result (3–7). Each member of the SVM committee had three characteristic features (some of 

which overlapped between committee members) and was evaluated independently. Training of 

the SVM committee was performed by using features extracted from detections in the training 

case data set of CT studies. The labels of the training detections were determined by their 



overlap with the reference standard data set of fractures manually marked by a radiologist on the 

same training set. The SVM committee operates by projecting data into high-dimensional feature 

space, which is divided by a hyperplane into TP and FP regions (3,4,8,9). On the basis of the 

comparison of the features of the training set, reference standard marked fractures, and features 

of the detection candidates from computer system analysis, the hyperplane is then optimized for 

lesion classification. The feature selection was conducted in two stages. A forward stepwise 

feature selection was first conducted to select the top 1000 three-feature SVMs. Then a second 

forward stepwise process was performed to select SVMs to form a seven-member committee. An 

individual score is calculated by each SVM for a given candidate detection, with majority vote 

determining the committee decision. LibSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) was 

used to establish the individual SVMs. Feature selection and SVM committee formation were 

developed in-house. 
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